Cell volume control in Paramecium: factors that activate the control mechanisms.
نویسندگان
چکیده
A fresh water protozoan Paramecium multimicronucleatum adapted to a given solution was found to swell until the osmotic pressure difference between the cytosol and the solution balanced the cytosolic pressure. The cytosolic pressure was generated as the cell swelled osmotically. When either one or both of these pressures was somehow modified, cell volume would change until a new balance between these pressures was established. A hypothetical osmolyte transport mechanism(s) was presumably activated when the cytosolic pressure exceeded the threshold value of approximately 1.5 x 10(5) Pa as the cell swelled after its subjection to a decreased osmolarity. The cytosolic osmolarity thereby decreased and the volume of the swollen cell resumed its initial value. This corresponds to regulatory volume decrease (RVD). By contrast, another hypothetical osmolyte transport mechanism(s) was activated when the cell shrank after its subjection to an increased osmolarity. The cytosolic osmolarity thereby increased and volume of the shrunken cell resumed its initial value. This corresponds to regulatory volume increase (RVI). The osmolyte transport mechanism responsible for RVD might be activated again when the external osmolarity decreases further, and the cytosolic osmolarity thereby decreases to the next lower level. Similarly, another osmolyte transport mechanism responsible for RVI might be activated again when the external osmolarity increases further, and the cytosolic osmolarity thereby increases to the next higher level. Stepwise changes in the cytosolic osmolarity caused by a gradual change in the adaptation osmolarity found in P. multimicronucleatum is attributable to these osmolyte transport mechanisms. An abrupt change in the amount of fluid discharged from the contractile vacuole seen immediately after changing the external osmolarity reduces an abrupt change in cell volume and thereby protects the cell from the disruption of the plasma membrane by excessive stretch or dehydration during shrinkage.
منابع مشابه
Quantitative Cell Numbers and Density of Mesangial Volume in a Rat Model with Induced Hyperglycemic and Treated with Mononuclear Derived CD133 Positive Cells
Background: There is evidence that mesangial cell structural changes contribute to the pathogenesis of diabetic nephropathy. To gain better insight into the mechanisms responsible for this issue, present study focused on effect of cord blood mononuclear cells (MNCs) derived CD133 positive cells on mesangial cell structure and function. Materials and Methods: The animals were randomly divided in...
متن کاملResponse to Morphine in a unicellular animal model (Paramecium caudatum)
Introduction: Response to morphine and role of Nitric Oxide (NO) on expression of morphine response has been studied in vertebrates. But, little evidence is provided in the matter in earlier invertebrates. This investigation for the first time evaluated the effect of NO on expression of morphine potency in Paramecium caudatum. Methods: Animal after isolation from natural media and specific i...
متن کاملMethanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: Potential antioxidant and anti-inflammatory mechanisms
Objective(s): This study was conducted to evaluate the cerebroprotective effect of methanolic leaf extract of Punica granatum (MePG) in Wistar rats.Materials and Methods: The MePG was initially assessed for in vitro antioxidant activity, and later evaluated on LPS-induced RAW 264.7 cell line assay. Finally, the MePG was evaluated against ischemia-reperfusion (I/R) induced brain injury in Wistar...
متن کاملP126: Post-Traumatic Stress Disorder and Inflammation
Post traumatic stress disorder, a special disease that also accompanies with histological changes such as inflammation. In this paper we decided to review the relation between PTSD and inflammation. Stressful events causes immune system dysfunction by suppressing natural killer cells and altering levels of cytokines. Also in this condition, cytotoxic T lymphocytes results in under strained pro-...
متن کاملControl of epileptic seizures by electrical low frequency deep brain stimulation: A review of probable mechanisms
Epilepsy is the most common neurological disease with no definitive method in treatment. Notably, the main way to treat and control epileptic seizures is drug therapy. However, about 20-30% of patients with epilepsy are drug resistant and require other therapeutic manners. Deep brain stimulation is a new therapeutic strategy for these patients. Conspicuously, there are no clear answers for basi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 208 Pt 3 شماره
صفحات -
تاریخ انتشار 2005